引言
我们在做 Android 开发时,常常需要实现异步加载图片/网页/其他。事实上,要实现异步加载,就需要实现线程间通信,而在 Android 中结合使用 Handler、Looper、Message 能够让不同的线程通信,完成异步任务。虽然 Android 官方为我们提供了 AsyncTask 类来完成异步任务,但这个类存在许多问题,并不好用,而且,AsyncTask 也是通过 Handler 和 Thread 来实现异步加载的,所以学习这方面的知识是有必要的
本文讲解思路大致如下:绘制 Android 消息处理机制图 -> 源码剖析消息处理机制中的组件 -> 实现一个图片异步加载 Demo。最终 Demo 效果图如下:
Android 消息处理机制剖析
消息处理模型
我们不妨先想想,一个消息处理机制需要什么?当然是:
消息源
消息队列
消息处理器
消息管理器
其中消息管理器又将划分为三个子模块:消息获取、消息分发、消息循环。我们先不管 Android 内部将如何实现消息处理机制(因为处理机制的抽象结构肯定是一样的,只是具体实现不一样),按照我们列出来的4大模块画出一个简单的消息处理模型:
Android 消息处理组件
现在我们已经知道消息处理模型需要哪些组件了,那就去 Android SDK 里面找相应的类吧~然后我们会发现下面四个类:
Message 类代表消息
MessageQueue 类代表消息队列
Handler 代表消息获取、消息处理
Looper 代表消息循环、消息分发
可能有人会怀疑我在吹nb,在骗大家,这个时候我只能选择看源码了……为了方便大家理解,我将从 Looper 类开始分析,因为 Looper 类在消息处理机制中是个“承上启下”的功能模块。
Looper
在解析 Looper 之前,不妨先来想想为什么需要 Looper 吧。
我们在进行 Android 开发的时候,为了不阻塞主线程(UI 线程),常常需要另开一个线程完成一些操作,而这些操作有一些执行一次就完了,有一些可能需要执行几次,几十次,甚至只要程序进程存活就要不断执行该操作。而普通线程通过 start() 方法只能执行相关动作一次,为了满足多次执行的需求,于是有了 Looper。
那么我们就进入 Looper 的源码,看看 Looper 中有哪些成员吧:
public final class Looper { private static final String TAG = "Looper"; static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>(); private static Looper sMainLooper; // guarded by Looper.class final MessageQueue mQueue; final Thread mThread; private Printer mLogging; }
大家可以看到,Looper 的核心成员是一个消息队列,该Looper 对应的线程,ThreadLocal 对象,和一个主线程 Looper 的引用。我们根据 Looper 的使用流程来分析它们的作用:
要使用 Looper,就必须调用 Looper 的 prepare() 方法:
private static void prepare(boolean quitAllowed) { if (sThreadLocal.get() != null) { throw new RuntimeException("Only one Looper may be created per thread"); } sThreadLocal.set(new Looper(quitAllowed)); }
我们可以看到,调用 prepare 方法后会通过 ThreadLocal 的 set 方法创建一个 Looper 对象,而且一个线程只能创建一个 Looper,我们不妨看看 ThreadLocal 通过 set 方法对 Looper 对象干了啥:
public void set(T value) { Thread currentThread = Thread.currentThread(); Values values = values(currentThread); if (values == null) { values = initializeValues(currentThread); } values.put(this, value); }
实际操作 Looper 对象的是 values() 方法返回对象
Values values(Thread current) { return current.localValues; }
values() 方法返回的对象是一个线程的内部变量,我们再进去看看会发现:在 Thread 类内部是这样定义 localValues 的 - ThreadLocal.Values localValues。也就是说,set 方法实际完成的操作是,将 Looper 对象与线程绑定,并且该 Looper 对象只在该线程内有效,其他线程无法访问该 Looper 对象。
执行完 prepare() 方法之后,我们就要调用 Looper 的 loop() 方法来实现循环了:
public static void loop() { final Looper me = myLooper(); if (me == null) { throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread."); } final MessageQueue queue = me.mQueue; // Make sure the identity of this thread is that of the local process, // and keep track of what that identity token actually is. Binder.clearCallingIdentity(); final long ident = Binder.clearCallingIdentity(); for (;;) { Message msg = queue.next(); // might block if (msg == null) { // No message indicates that the message queue is quitting. return; } // This must be in a local variable, in case a UI event sets the logger Printer logging = me.mLogging; if (logging != null) { logging.println(">>>>> Dispatching to " + msg.target + " " + msg.callback + ": " + msg.what); } msg.target.dispatchMessage(msg); if (logging != null) { logging.println("<<<<< Finished to " + msg.target + " " + msg.callback); } // Make sure that during the course of dispatching the // identity of the thread wasn't corrupted. final long newIdent = Binder.clearCallingIdentity(); if (ident != newIdent) { Log.wtf(TAG, "Thread identity changed from 0x" + Long.toHexString(ident) + " to 0x" + Long.toHexString(newIdent) + " while dispatching to " + msg.target.getClass().getName() + " " + msg.callback + " what=" + msg.what); } msg.recycleUnchecked(); } }
方法有点长,但实际逻辑比较简单:首先判断 prepare() 方法是否被调用,以确保 Looper 和某个线程绑定(需要注意的是:默认情况下,新建的 Looper 对象都与主线程绑定),然后获取对应线程的消息队列,之后就不断循环读取队列中的消息,如果队列中没有消息时 Loop() 方法就会结束(一般不会出现这种情况),否则将消息交给 msg.target 对象分发。
以上就是 Looper 的核心代码了,通过分析我们可以了解到 Looper 与线程的关系,以及在消息分发机制中所起的作用,如图:
Message
既然我们在分析 Looper 源码的最后提到了 Message 类,那么我们就先来看看 Message 类~那么 Message 类作为消息的载体到底存储了什么,做了什么呢?
public final class Message implements Parcelable { public int what; public int arg1; public int arg2; public Object obj; public Messenger replyTo; public int sendingUid = -1; /*package*/ static final int FLAG_IN_USE = 1 << 0; /** If set message is asynchronous */ /*package*/ static final int FLAG_ASYNCHRONOUS = 1 << 1; /** Flags to clear in the copyFrom method */ /*package*/ static final int FLAGS_TO_CLEAR_ON_COPY_FROM = FLAG_IN_USE; /*package*/ int flags; /*package*/ long when; /*package*/ Bundle data; /*package*/ Handler target; /*package*/ Runnable callback; // sometimes we store linked lists of these things /*package*/ Message next;
现在我们可以知道,原来刚刚处理消息的 target 就是 Handler 类的对象啦。在 Message 类里,what 用于辨识 Message 的用途,arg1 和 arg2 用于传递一些简单的数据,obj 用于传递对象,data 用于传递复杂数据。
Message 类的方法我觉得是没啥好说的,基本上都是 get/set 方法,当然还有回收方法,例如在 Looper 的 loop() 方法中,每一次循环结束都会执行 Message 的 recycleUnchecked() 方法,将被分发 Message 对象回收。
可能有人会奇怪,消息如果没有被处理就被回收了不会发生消息丢失的情况吗?莫慌,等会我会在分析 Handler 处理消息的时候给大家解释。
Handler
我们在前面的分析中看到,真正处理消息的是 Handler 的 dispatchMessage() 方法,那么我们就从这个方法入手分析 Handler 吧:
public void dispatchMessage(Message msg) { if (msg.callback != null) { handleCallback(msg); } else { if (mCallback != null) { if (mCallback.handleMessage(msg)) { return; } } handleMessage(msg); } }
在 dispatchMessage() 方法中,如果 msg 的 callback 不为 null 会调用 Handler 的 handleMessage() 方法处理消息。也就是说,只要消息的 callback 不为 null,就会调用 handleCallback() 方法,那么未处理的消息会不会回到消息队列呢?
private static void handleCallback(Message message) { message.callback.run(); }
看到这里有没有恍然大悟的感觉呢?刚刚我们在分析 Message 源码的时候已经知道,callback 就是 Runnable 接口的实例,也就是说,如果消息没有被处理,就会回到消息队列中啦。那么 Handler 又是怎样处理消息的呢?
public void handleMessage(Message msg) { }
竟然是个空方法……不过也很正常,因为 Handler 类只需要提供抽象,具体的处理逻辑应该由开发者决定嘛。那我们分析就到此为止了吗?才没有!我们还没有剖析 Handler 能够实现异步事件处理的原因呢,回到 Handler 的源码,我们会看到下面这个代码段:
final MessageQueue mQueue; final Looper mLooper; final Callback mCallback; final boolean mAsynchronous; IMessenger mMessenger;
我靠……Handler 里面居然拥有消息队列、Looper、异步标志位,我们回想一下刚刚分析得到过什么结论:一个 Looper 只能属于一个线程,Looper 有对应线程的消息队列。我们再来看看 Handler 的构造方法,随便挑一个吧:
public Handler(Callback callback, boolean async) { if (FIND_POTENTIAL_LEAKS) { final Class<? extends Handler> klass = getClass(); if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) && (klass.getModifiers() & Modifier.STATIC) == 0) { Log.w(TAG, "The following Handler class should be static or leaks might occur: " + klass.getCanonicalName()); } } mLooper = Looper.myLooper(); if (mLooper == null) { throw new RuntimeException( "Can't create handler inside thread that has not called Looper.prepare()"); } mQueue = mLooper.mQueue; mCallback = callback; mAsynchronous = async; }
我们可以看到,Handler 内的消息队列就是 Looper 里的消息队列,也就是说 Handler 能够与任何一个线程的消息队列进行通信,并处理其中的消息,或者发送信息到其他线程的消息队列中!
异步处理 Demo
完成上面的分析以后,我们就知道在 Android 中的消息处理机制了,那么现在就来实现一个异步处理 Demo吧。Demo 非常简单,就是异步下载一张图片,并把它显示到一个 ImageView 中,代码比较多,就只给出核心代码,下面有下载地址:
public class DownloadTask implements Runnable{ ………… private void updateMsg(Message msg){ Bundle data = new Bundle(); Bitmap img = downImage(url); data.putString("url", url); data.putParcelable("img", img); msg.setData(data); } public Bitmap downImage(String url) { Bitmap img = null; try { URL mUrl = new URL(url); HttpURLConnection conn = (HttpURLConnection) mUrl.openConnection(); conn.setDoInput(true); conn.connect(); InputStream is = conn.getInputStream(); img = BitmapFactory.decodeStream(is); } catch (IOException e) { Log.d(TAG, "downloadImg-Exception"); } return img; } }
DownloadTask 类负责处理下载任务,下载开始下载任务,下载任务完成后将图片地址和图片存到 msg 里边,发送给 DownloadHandler :
public class DownloadHandler extends Handler{ …… @Override public void handleMessage(Message msg) { String url = msg.getData().getString("url"); Bitmap img = msg.getData().getParcelable("img"); Log.d(TAG, url); loader.iLoader.update(img); } }
最后通过 ILoader 接口更新外部 UI:
public interface ILoader { public void update(Bitmap img); } }
下载地址