多线程不管在java还是做android开发都是非常重要的技术点,比如listview每个item都有下载的功能,这时候如果每次下载都去new一个Thread肯定是不合理的,这样对内存和性能肯定是很大的损失,如果能做到就开几个线程,当一个下载完了接着继续下载另一个,而不是单独再去开启线程的话,是不是大大的降低了对内存的使用,而且还提高了程序的性能,恭喜你java已经为我们提供了技术方案,就是使用线程池,
一 简介
线程的使用在java中占有极其重要的地位,在jdk1.4极其之前的jdk版本中,关于线程池的使用是极其简陋的。在jdk1.5之后这一情况有了很大的改观。Jdk1.5之后加入了java.util.concurrent包,这个包中主要介绍java中线程以及线程池的使用。为我们在开发中处理线程的问题提供了非常大的帮助
二 线程池的作用
线程池作用就是限制系统中执行线程的数量。(假如有100个任务都去开启线程的话,消耗内存是很大的,而且线程之间时间片切换也需要时间,这样就等于浪费了系统的资源,从而影响了系统的性能)
根据系统的环境情况,可以自动或手动设置线程数量,达到运行的最佳效果;少了浪费了系统资源,多了造成系统拥挤效率不高。用线程池控制线程数量,其他线程排队等候。一个任务执行完毕,再从队列的中取最前面的任务开始执行。若队列中没有等待进程,线程池的这一资源处于等待。当一个新任务需要运行时,如果线程池中有等待的工作线程,就可以开始运行了;否则进入等待队列
三 为什么要用线程池
1.减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务。
2.可以根据系统的承受能力,调整线程池中工作线线程的数目,防止因为消耗过多的内存,而把服务器累趴下(每个线程需要大约1MB内存,线程开的越多,消耗的内存也就越大,最后死机)。
四 线程池的原理
看下下面例子很好的解释了线程池的原理:
ThreadPool.java 是线程池类,线程管理器:创建线程,执行任务,销毁线程,获取线程基本信息
package cn.kge.com.thread; import java.util.LinkedList; import java.util.List; /** * 线程池类,线程管理器:创建线程,执行任务,销毁线程,获取线程基本信息 * */ public class ThreadPool { // 线程池中默认线程的个数为5 private static int worker_num = 5; // 工作线程 private WorkThread[] workThrads; // 未处理的任务 private static volatile int finished_task = 0; // 任务队列,作为一个缓冲,List线程不安全 private List<Runnable> taskQueue = new LinkedList<Runnable>(); private static ThreadPool threadPool; // 创建具有默认线程个数的线程池 private ThreadPool() { this(5); } // 创建线程池,worker_num为线程池中工作线程的个数 private ThreadPool(int worker_num) { ThreadPool.worker_num = worker_num; workThrads = new WorkThread[worker_num]; for (int i = 0; i < worker_num; i++) { workThrads[i] = new WorkThread(); workThrads[i].start();// 开启线程池中的线程 } } // 单态模式,获得一个默认线程个数的线程池 public static ThreadPool getThreadPool() { return getThreadPool(ThreadPool.worker_num); } // 单态模式,获得一个指定线程个数的线程池,worker_num(>0)为线程池中工作线程的个数 // worker_num<=0创建默认的工作线程个数 public static ThreadPool getThreadPool(int worker_num1) { if (worker_num1 <= 0) worker_num1 = ThreadPool.worker_num; if (threadPool == null) threadPool = new ThreadPool(worker_num1); return threadPool; } // 执行任务,其实只是把任务加入任务队列,什么时候执行有线程池管理器觉定 public void execute(Runnable task) { synchronized (taskQueue) { taskQueue.add(task); taskQueue.notify(); } } // 批量执行任务,其实只是把任务加入任务队列,什么时候执行有线程池管理器觉定 public void execute(Runnable[] task) { synchronized (taskQueue) { for (Runnable t : task) taskQueue.add(t); taskQueue.notify(); } } // 批量执行任务,其实只是把任务加入任务队列,什么时候执行有线程池管理器觉定 public void execute(List<Runnable> task) { synchronized (taskQueue) { for (Runnable t : task) taskQueue.add(t); taskQueue.notify(); } } // 销毁线程池,该方法保证在所有任务都完成的情况下才销毁所有线程,否则等待任务完成才销毁 public void destroy() { while (!taskQueue.isEmpty()) {// 如果还有任务没执行完成,就先睡会吧 try { Thread.sleep(10); } catch (InterruptedException e) { e.printStackTrace(); } } // 工作线程停止工作,且置为null for (int i = 0; i < worker_num; i++) { workThrads[i].stopWorker(); workThrads[i] = null; } threadPool=null; taskQueue.clear();// 清空任务队列 } // 返回工作线程的个数 public int getWorkThreadNumber() { return worker_num; } // 返回已完成任务的个数,这里的已完成是只出了任务队列的任务个数,可能该任务并没有实际执行完成 public int getFinishedTasknumber() { return finished_task; } // 返回任务队列的长度,即还没处理的任务个数 public int getWaitTasknumber() { return taskQueue.size(); } // 覆盖toString方法,返回线程池信息:工作线程个数和已完成任务个数 @Override public String toString() { return "WorkThread number:" + worker_num + " finished task number:" + finished_task + " wait task number:" + getWaitTasknumber(); } /** * 内部类,工作线程 */ private class WorkThread extends Thread { // 该工作线程是否有效,用于结束该工作线程 private boolean isRunning = true; /* * 关键所在啊,如果任务队列不空,则取出任务执行,若任务队列空,则等待 */ @Override public void run() { Runnable r = null; while (isRunning) {// 注意,若线程无效则自然结束run方法,该线程就没用了 synchronized (taskQueue) { while (isRunning && taskQueue.isEmpty()) {// 队列为空 try { taskQueue.wait(20); } catch (InterruptedException e) { e.printStackTrace(); } } if (!taskQueue.isEmpty()) r = taskQueue.remove(0);// 取出任务 } if (r != null) { r.run();// 执行任务 } finished_task++; r = null; } } // 停止工作,让该线程自然执行完run方法,自然结束 public void stopWorker() { isRunning = false; } } }
Test.java 测试类
package cn.kge.com.thread; public class Test { public static void main(String[] args) { // 创建3个线程的线程池 ThreadPool t = ThreadPool.getThreadPool(3); t.execute(new Runnable[] { new Task(), new Task(), new Task() }); t.execute(new Runnable[] { new Task(), new Task(), new Task() }); System.out.println(t); t.destroy();// 所有线程都执行完成才destory System.out.println(t); } // 任务类 static class Task implements Runnable { private static volatile int i = 1; @Override public void run() {// 执行任务 System.out.println("任务 " + (i++) + " 完成"); } } }
其实线程池肯定是需要自己去实现,而java已经为我们提供好了,现在就看下java sdk自带的线程池
Java里面线程池的顶级接口是Executor,但是严格意义上讲Executor并不是一个线程池,而只是一个执行线程的工具。真正的线程池接口是ExecutorService
现在看下比较重要的几个类
要配置一个线程池是比较复杂的,尤其是对于线程池的原理不是很清楚的情况下,很有可能配置的线程池不是较优的,因此在Executors类里面提供了一些静态工厂,生成一些常用的线程池
1. newSingleThreadExecutor
创建一个单线程的线程池。这个线程池只有一个线程在工作,也就是相当于单线程串行执行所有任务。如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它。此线程池保证所有任务的执行顺序按照任务的提交顺序执行。
2.newFixedThreadPool
创建固定大小的线程池。每次提交一个任务就创建一个线程,直到线程达到线程池的最大大小。线程池的大小一旦达到最大值就会保持不变,如果某个线程因为执行异常而结束,那么线程池会补充一个新线程。
3. newCachedThreadPool
创建一个可缓存的线程池。如果线程池的大小超过了处理任务所需要的线程,
那么就会回收部分空闲(60秒不执行任务)的线程,当任务数增加时,此线程池又可以智能的添加新线程来处理任务。此线程池不会对线程池大小做限制,线程池大小完全依赖于操作系统(或者说JVM)能够创建的最大线程大小。
4.newScheduledThreadPool
创建一个大小无限的线程池。此线程池支持定时以及周期性执行任务的需求。
五 ThreadPoolExecutor详解
ThreadPoolExecutor的完整构造方法的签名是:ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler)
corePoolSize - 池中所保存的线程数,包括空闲线程。
maximumPoolSize-池中允许的最大线程数。
keepAliveTime - 当线程数大于核心时,此为终止前多余的空闲线程等待新任务的最长时间。
unit - keepAliveTime 参数的时间单位。
workQueue - 执行前用于保持任务的队列。此队列仅保持由 execute方法提交的 Runnable任务。
threadFactory - 执行程序创建新线程时使用的工厂。
handler - 由于超出线程范围和队列容量而使执行被阻塞时所使用的处理程序。
ThreadPoolExecutor是Executors类的底层实现
在JDK帮助文档中,有如此一段话:
“强烈建议程序员使用较为方便的Executors工厂方法Executors.newCachedThreadPool()(无界线程池,可以进行自动线程回收)、Executors.newFixedThreadPool(int)(固定大小线程池)Executors.newSingleThreadExecutor()(单个后台线程)
它们均为大多数使用场景预定义了设置。”
下面介绍一下几个类的源码:
ExecutorService newFixedThreadPool (int nThreads):固定大小线程池。
可以看到,corePoolSize和maximumPoolSize的大小是一样的(实际上,后面会介绍,如果使用无界queue的话maximumPoolSize参数是没有意义的),keepAliveTime和unit的设值表名什么?-就是该实现不想keep alive!最后的BlockingQueue选择了LinkedBlockingQueue,该queue有一个特点,他是无界的。
1. public static ExecutorService newFixedThreadPool(int nThreads) { 2. return new ThreadPoolExecutor(nThreads, nThreads, 3. 0L, TimeUnit.MILLISECONDS, 4. new LinkedBlockingQueue<Runnable>()); 5. }
ExecutorService newSingleThreadExecutor():单线程
1. public static ExecutorService newSingleThreadExecutor() { 2. return new FinalizableDelegatedExecutorService 3. (new ThreadPoolExecutor(1, 1, 4. 0L, TimeUnit.MILLISECONDS, 5. new LinkedBlockingQueue<Runnable>())); 6. }
ExecutorService newCachedThreadPool():无界线程池,可以进行自动线程回收
这个实现就有意思了。首先是无界的线程池,所以我们可以发现maximumPoolSize为big big。其次BlockingQueue的选择上使用SynchronousQueue。可能对于该BlockingQueue有些陌生,简单说:该QUEUE中,每个插入操作必须等待另一个线程的对应移除操作
1. public static ExecutorService newCachedThreadPool() { 2. return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 3. 60L, TimeUnit.SECONDS, 4. new SynchronousQueue<Runnable>()); }
先从BlockingQueue<Runnable> workQueue这个入参开始说起。在JDK中,其实已经说得很清楚了,一共有三种类型的queue。
所有BlockingQueue 都可用于传输和保持提交的任务。可以使用此队列与池大小进行交互:
如果运行的线程少于 corePoolSize,则 Executor始终首选添加新的线程,而不进行排队。(如果当前运行的线程小于corePoolSize,则任务根本不会存放,添加到queue中,而是直接抄家伙(thread)开始运行)
如果运行的线程等于或多于 corePoolSize,则 Executor始终首选将请求加入队列,而不添加新的线程。
如果无法将请求加入队列,则创建新的线程,除非创建此线程超出 maximumPoolSize,在这种情况下,任务将被拒绝。
queue上的三种类型。
排队有三种通用策略:
直接提交。工作队列的默认选项是 SynchronousQueue,它将任务直接提交给线程而不保持它们。在此,如果不存在可用于立即运行任务的线程,则试图把任务加入队列将失败,因此会构造一个新的线程。此策略可以避免在处理可能具有内部依赖性的请求集时出现锁。直接提交通常要求无界 maximumPoolSizes 以避免拒绝新提交的任务。当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。
无界队列。使用无界队列(例如,不具有预定义容量的 LinkedBlockingQueue)将导致在所有corePoolSize 线程都忙时新任务在队列中等待。这样,创建的线程就不会超过 corePoolSize。(因此,maximumPoolSize的值也就无效了。)当每个任务完全独立于其他任务,即任务执行互不影响时,适合于使用无界队列;例如,在 Web页服务器中。这种排队可用于处理瞬态突发请求,当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。
有界队列。当使用有限的 maximumPoolSizes时,有界队列(如 ArrayBlockingQueue)有助于防止资源耗尽,但是可能较难调整和控制。队列大小和最大池大小可能需要相互折衷:使用大型队列和小型池可以最大限度地降低 CPU 使用率、操作系统资源和上下文切换开销,但是可能导致人工降低吞吐量。如果任务频繁阻塞(例如,如果它们是 I/O边界),则系统可能为超过您许可的更多线程安排时间。使用小型队列通常要求较大的池大小,CPU使用率较高,但是可能遇到不可接受的调度开销,这样也会降低吞吐量。
BlockingQueue的选择。
例子一:使用直接提交策略,也即SynchronousQueue。
首先SynchronousQueue是无界的,也就是说他存数任务的能力是没有限制的,但是由于该Queue本身的特性,在某次添加元素后必须等待其他线程取走后才能继续添加。在这里不是核心线程便是新创建的线程,但是我们试想一样下,下面的场景。
我们使用一下参数构造ThreadPoolExecutor:
1. new ThreadPoolExecutor(
2. 2, 3, 30, TimeUnit.SECONDS,
3. new SynchronousQueue<Runnable>(),
4. new RecorderThreadFactory("CookieRecorderPool"),
new ThreadPoolExecutor.CallerRunsPolicy());new ThreadPoolExecutor(
2, 3, 30, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>(),
new RecorderThreadFactory("CookieRecorderPool"),
new ThreadPoolExecutor.CallerRunsPolicy());
当核心线程已经有2个正在运行.
此时继续来了一个任务(A),根据前面介绍的“如果运行的线程等于或多于 corePoolSize,则Executor始终首选将请求加入队列,而不添加新的线程。”,所以A被添加到queue中。又来了一个任务(B),且核心2个线程还没有忙完,OK,接下来首先尝试1中描述,但是由于使用的SynchronousQueue,所以一定无法加入进去。此时便满足了上面提到的“如果无法将请求加入队列,则创建新的线程,除非创建此线程超出maximumPoolSize,在这种情况下,任务将被拒绝。”,所以必然会新建一个线程来运行这个任务。暂时还可以,但是如果这三个任务都还没完成,连续来了两个任务,第一个添加入queue中,后一个呢?queue中无法插入,而线程数达到了maximumPoolSize,所以只好执行异常策略了。所以在使用SynchronousQueue通常要求maximumPoolSize是无界的,这样就可以避免上述情况发生(如果希望限制就直接使用有界队列)。对于使用SynchronousQueue的作用jdk中写的很清楚:此策略可以避免在处理可能具有内部依赖性的请求集时出现锁。
什么意思?如果你的任务A1,A2有内部关联,A1需要先运行,那么先提交A1,再提交A2,当使用SynchronousQueue我们可以保证,A1必定先被执行,在A1么有被执行前,A2不可能添加入queue中。
例子二:使用无界队列策略,即LinkedBlockingQueue
这个就拿newFixedThreadPool来说,根据前文提到的规则:
如果运行的线程少于 corePoolSize,则 Executor 始终首选添加新的线程,而不进行排队。那么当任务继续增加,会发生什么呢?
如果运行的线程等于或多于 corePoolSize,则 Executor 始终首选将请求加入队列,而不添加新的线程。OK,此时任务变加入队列之中了,那什么时候才会添加新线程呢?
如果无法将请求加入队列,则创建新的线程,除非创建此线程超出 maximumPoolSize,在这种情况下,任务将被拒绝。这里就很有意思了,可能会出现无法加入队列吗?不像SynchronousQueue那样有其自身的特点,对于无界队列来说,总是可以加入的(资源耗尽,当然另当别论)。换句说,永远也不会触发产生新的线程!corePoolSize大小的线程数会一直运行,忙完当前的,就从队列中拿任务开始运行。所以要防止任务疯长,比如任务运行的实行比较长,而添加任务的速度远远超过处理任务的时间,而且还不断增加,不一会儿就爆了。
例子三:有界队列,使用ArrayBlockingQueue。
这个是最为复杂的使用,所以JDK不推荐使用也有些道理。与上面的相比,最大的特点便是可以防止资源耗尽的情况发生。
举例来说,请看如下构造方法:
1. new ThreadPoolExecutor(
2. 2, 4, 30, TimeUnit.SECONDS,
3. new ArrayBlockingQueue<Runnable>(2),
4. new RecorderThreadFactory("CookieRecorderPool"),
5. new ThreadPoolExecutor.CallerRunsPolicy());
new ThreadPoolExecutor(
2, 4, 30, TimeUnit.SECONDS,
new ArrayBlockingQueue<Runnable>(2),
new RecorderThreadFactory("CookieRecorderPool"),
new ThreadPoolExecutor.CallerRunsPolicy());
假设,所有的任务都永远无法执行完。
对于首先来的A,B来说直接运行,接下来,如果来了C,D,他们会被放到queue中,如果接下来再来E,F,则增加线程运行E,F。但是如果再来任务,队列无法再接受了,线程数也到达最大的限制了,所以就会使用拒绝策略来处理。
keepAliveTime
jdk中的解释是:当线程数大于核心时,此为终止前多余的空闲线程等待新任务的最长时间。
有点拗口,其实这个不难理解,在使用了“池”的应用中,大多都有类似的参数需要配置。比如数据库连接池,DBCP中的maxIdle,minIdle参数。
什么意思?接着上面的解释,后来向老板派来的工人始终是“借来的”,俗话说“有借就有还”,但这里的问题就是什么时候还了,如果借来的工人刚完成一个任务就还回去,后来发现任务还有,那岂不是又要去借?这一来一往,老板肯定头也大死了。
合理的策略:既然借了,那就多借一会儿。直到“某一段”时间后,发现再也用不到这些工人时,便可以还回去了。这里的某一段时间便是keepAliveTime的含义,TimeUnit为keepAliveTime值的度量。
RejectedExecutionHandler
另一种情况便是,即使向老板借了工人,但是任务还是继续过来,还是忙不过来,这时整个队伍只好拒绝接受了。
RejectedExecutionHandler接口提供了对于拒绝任务的处理的自定方法的机会。在ThreadPoolExecutor中已经默认包含了4中策略,因为源码非常简单,这里直接贴出来。
CallerRunsPolicy:线程调用运行该任务的 execute 本身。此策略提供简单的反馈控制机制,能够减缓新任务的提交速度。
1. public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2. if (!e.isShutdown()) {
3. r.run();
4. }
5. }
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
r.run();
}
}
这个策略显然不想放弃执行任务。但是由于池中已经没有任何资源了,那么就直接使用调用该execute的线程本身来执行。
AbortPolicy:处理程序遭到拒绝将抛出运行时RejectedExecutionException
1. public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2. throw new RejectedExecutionException();
3. }
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
throw new RejectedExecutionException();
}
这种策略直接抛出异常,丢弃任务。
DiscardPolicy:不能执行的任务将被删除
1. public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2. }
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
}
这种策略和AbortPolicy几乎一样,也是丢弃任务,只不过他不抛出异常。
DiscardOldestPolicy:如果执行程序尚未关闭,则位于工作队列头部的任务将被删除,然后重试执行程序(如果再次失败,则重复此过程)
1. public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2. if (!e.isShutdown()) {
3. e.getQueue().poll();
4. e.execute(r);
5. }
}public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
e.getQueue().poll();
e.execute(r);
}
}
该策略就稍微复杂一些,在pool没有关闭的前提下首先丢掉缓存在队列中的最早的任务,然后重新尝试运行该任务。这个策略需要适当小心。
设想:如果其他线程都还在运行,那么新来任务踢掉旧任务,缓存在queue中,再来一个任务又会踢掉queue中最老任务。
总结:
keepAliveTime和maximumPoolSize及BlockingQueue的类型均有关系。如果BlockingQueue是无界的,那么永远不会触发maximumPoolSize,自然keepAliveTime也就没有了意义。
反之,如果核心数较小,有界BlockingQueue数值又较小,同时keepAliveTime又设的很小,如果任务频繁,那么系统就会频繁的申请回收线程。
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}