«

ART GC介绍

时间:2024-3-2 18:54     作者:韩俊     分类: Android


学习了Android 4.4 ART的Mark-Sweep(MS)GC。到了Android 5.0,ART增加了对Compacting GC的支持,包括Semi-Space(SS)、Generational Semi-Space(GSS)和Mark-Compact (MC)三种。

总体来说,Compacting GC和Mark-Sweep GC各有优劣。所谓Compacting GC,就是在进行GC的时候,同时对堆空间进行压缩,以消除碎片,因此它的堆空间利用率就更高。但是也正因为要对堆空间进行压缩,导致Compacting GC的GC效率不如Mark-Sweep GC。不过,只要我们使用得到恰当,是能够同时发挥Compacting GC和Mark-Sweep GC的长处的。例如,当Android应用程序被激活在前台运行时,就使用Mark-Sweep GC,而当Android应用程序回退到后台运行时,就使用Compacting GC。

为了达到上述目的,ART运行时内部有Foreground和Background两种GC之分。在ART运行时启动的时候,可以通过-Xgc和-XX:BackgroundGC来指定Foreground GC和Background GC的类型,即具体是哪一种Mark-Sweep GC或者Compacting GC。由于Mark-Sweep GC和Compacting GC所需要的堆空间结构是不一样的,因此,当发生Foreground GC和Background GC切换时,ART运行时需要提供支持,以维护堆空间的正确性。

除了适合后台运行时之外,Compacting GC还适合用在内存分配时。在以往的Mark-Sweep GC时,由于碎片而产生的内存不足问题,是解决不了的,只能让应用程序OOM。但是有了Compacting GC之后,就可以在应用程序OOM之前,再作一次努力,那就是对原来的堆空间进行压缩一下,再尝试进行分配,这样就可以提高成功分配内存的概率。

从上面的分析可以看出,Compacting GC的最大特点就是会对堆空间进行压缩。这意味着对象在堆空间的位置是会发生变化的。但是对应用程序来说,这种对象位置的变化是要透明的。因此,Compacting GC的最核心挑战就是在保持应用程序逻辑不变和正确的前提下,在需要的时候对对象的位置进行移动。所以在这篇文章里面,我们第一个要介绍的技术就是对象移动技术,接着再在此基础之上,展开对其它技术的介绍。

第一种方案是使用者不是直接引用对象,而是间接引用。这就类似于操作系统里面的文件描述符(fd)。我们在调用操作系统接口open打开一个文件的时候,获得的是一个整型的文件描述符。这个文件描述符其实就是一个索引,它索引到内核为每一个进程都创建的一个打开文件表。这个打开文件表里面的每一个项保存的都是一个指向一个打开文件结构体的指针。我们可以把这个打文件结构体看作就一个对象。当这个对象移动时,也就是在另外一个地方重新分配时,只需要将新分配得到的地址重新填入对应的打开文件表的表项就可以了。这对应用程序来说,是完全透明的,因为它是通过打开文件表来间接访问得到对应的打开文件结构体的。

我们可以轻易看出,上述方案的最大缺点就是每次访问对象都需要有额外的开销,也就是影响效率。但是如果我们可以忽略在执行Compacting GC时的这个开销,是不是就可以使用了呢?答案是否定的。由于Foreground和Background两种GC的同时存在,ART内部可能同时存在着Mark-Sweep和Compacting两种类型的GC。如果我们在Compacting GC中使用了该方案,那么也意味着Mark-Sweep GC也必须是要间接地去访问对象。但是这完全是没有必要的,因此ART使用的是第二种对象移动技术,也就是修改对象使用者的引用,使得它无论何时何地,总是直接指向对象的真实地址。

在ART运行时中,对象使用者无非就是位于两个位置,一个是堆,一个栈。因此,当一个对象被移动时,我们只需要找到它在堆和栈上的使用者的位置,那就可以将它们的值修改为对象被移动后的新地址,那就达到目的了。

摘至:http://blog.csdn.net/luoshengyang/article/details/44513977



标签: android

热门推荐