这篇“Golang怎么实现带优先级的select”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Golang怎么实现带优先级的select”文章吧。
背景
在 Golang 里面,我们经常使用 channel 进行协程之间的通信。这里有一个经典的场景,也就是生产者消费者模式,生产者协程不断地往 Channel 里面塞元素,而消费者协程不断地消费这些元素。
写成代码就是如下:
package main import ( "fmt" "sync" "time" ) func main() { ch := make(chan int, 10) var wg sync.WaitGroup wg.Add(2) go producer(ch, &wg) go consumer(ch, &wg) wg.Wait() } // 生产者 func producer(ch chan int, wg *sync.WaitGroup) { defer wg.Done() i := 0 for { select { case ch <- i: default: // 丢弃 log.Println("discard") } i++ time.Sleep(time.Second) } } // 消费者 func consumer(ch chan int, wg *sync.WaitGroup) { defer wg.Done() consume := func(i int) { fmt.Println(i) time.Sleep(time.Millisecond * 700) } for { i := <-ch consume(i) // 消费元素 } }
生产者不断产生元素,消费者消费元素。生产者不会等待消费者消费完毕(不然可能影响其他任务),如果 channel 已经满了,也就是说明消费者消费不过来,生产者就会丢弃这个任务。
生产者平均一秒生成1个,消费者0.7秒消费一个。正常情况下消费者是消费得过来的,然而很多时候消费者协程还需要做一些定时任务,比如一些定时清理工作。假如这个清理工作每2秒触发一次,清理时间一般需要1.5秒,也就是如果每次都做每一秒有0.75秒会被清理工作占有了,但是它不是一定要非常及时的,可以等空闲时再进行。 如下代码:
// 消费者 func consumer(ch chan int, wg *sync.WaitGroup) { defer wg.Done() t := time.NewTicker(time.Second * 2) consume := func(i int) { fmt.Println(i) time.Sleep(time.Millisecond * 700) } clear := func() { fmt.Println("clear") time.Sleep(time.Millisecond * 1500) } for { select { case i := <-ch: consume(i) // 消费元素: case <-t.C: clear() // 清理 } } }
运行程序到第15秒的时候,生产者发现 channel满了,于是开始丢包:
0
1
clear
2
3
4
5
6
clear
7
clear
8
clear
9
clear
clear
10
clear
11
12
13
14
clear
15
clear
clear
discard
16
clear
discard
discard
解决方案
既然清理任务的优先级并不高,那么它就不应该阻塞消费元素流程,而是应该在空闲时才去执行。由于 Golang 里面,如果 select 两个 case 都同时满足,会随机选一个执行,因此第一想到的可能会使用如下代码实现优先级case:
// 消费者 func consumer(ch chan int, wg *sync.WaitGroup) { defer wg.Done() t := time.NewTicker(time.Second * 2) consume := func(i int) { fmt.Println(i) time.Sleep(time.Millisecond * 700) } clear := func() { fmt.Println("clear") time.Sleep(time.Millisecond * 1500) } for { select { case i := <-ch: consume(i) // 消费元素 continue // 可能还有元素,不走清理逻辑 default: } // 没有元素才走清理逻辑 select { case <-t.C: clear() // 清理 default: } } }
如果运行这个程序,可以发现它能够满足优先级的需求,先消费元素,空闲时再执行清理任务。
然而,在没有元素可以消费,也没有清理任务可以执行的时候,这里的for将会不断地循环,浪费CPU资源。
其实,可以使用下面的方法实现优先级case,它能够在没有元素就绪的时候阻塞在 select,而不是不断循环:
// 消费者 func consumer(ch chan int, wg *sync.WaitGroup) { defer wg.Done() t := time.NewTicker(time.Second * 2) consume := func(i int) { fmt.Println(i) time.Sleep(time.Millisecond * 700) } clear := func() { fmt.Println("clear") time.Sleep(time.Millisecond * 1500) } for { select { case i := <-ch: consume(i) // 消费元素 case <-t.C: priority: for { // 清理前先把元素消费完 select { case i := <-ch: consume(i) // 消费元素 default: break priority // 注:这里会跳过这个循环,而不是再次执行 } } clear() // 清理 } } }
这里的关键是在触发清理case的时候,先去把channel里面的元素消费完,再进行清理,从而保证能够留下足够的channel缓冲区给生产者放置生产的元素。
一个封装
上面那段优先级case代码其实挺常用的,但是几乎都是模板代码,特别是需要在两个地方写
consume(i),因此我们可以封装一下这段代码,方便使用,减少出错:
// 优先级select ch2 的任务先执行完毕后才会执行 ch3 里面的任务 func PrioritySelect[T1, T2 any](ch2 <-chan T1, f1 func(T1), ch3 <-chan T2, f2 func(T2)) { for { select { case a := <-ch2: f1(a) case b := <-ch3: priority: for { select { case a := <-ch2: f1(a) default: break priority } } f2(b) } } }
这样,我们的消费者代码就可以简化为:
// 消费者 func consumer(ch chan int, wg *sync.WaitGroup) { defer wg.Done() t := time.NewTicker(time.Second * 2) consume := func(i int) { fmt.Println(i) time.Sleep(time.Millisecond * 700) } clear := func(time.Time) { fmt.Println("clear") time.Sleep(time.Millisecond * 1500) } PrioritySelect(ch, consume, t.C, clear) }