这篇文章主要介绍“Golang并发之RWMutex怎么使用”,在日常操作中,相信很多人在Golang并发之RWMutex怎么使用问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Golang并发之RWMutex怎么使用”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
RWMutex
读写互斥锁是一种同步原语,它允许多个协程同时访问共享资源,同时确保一次只有一个协程可以修改资源。相较于互斥锁,读写互斥锁在读操作比写操作更频繁的情况下,可以带来更好的性能表现。
在
Go语言中,
RWMutex是一种读写互斥锁的实现,它提供了一种简单有效的方式来管理对共享资源的并发访问。它提供了两种类型的锁:读锁 和 写锁。
1、读锁(
RLock()、
TryRLock()和
RUnlock()方法)
RWMutex的读锁是一种共享锁,当一个协程获取了读锁后,其他协程也可以同时获取读锁,从而允许并发的读操作。
2、写锁(
Lock()、
TryLock()和
Unlock()方法)
RWMutex的写锁是一种独占锁,当一个协程获取了写锁后,其他协程无法获取读锁或写锁,直到该协程释放写锁。在写锁未被释放之前,任何想要获取读锁或写锁的
goroutine都会被阻塞。
RWMutex 结构体介绍
type RWMutex struct { w Mutex writerSem uint32 // 写操作等待者 readerSem uint32 // 读操作等待者 readerCount atomic.Int32 // 持有读锁的 goroutine 数量 readerWait atomic.Int32 // 请求写锁时,需要等待完成的读锁数量 }
RWMutex由以下字段组成:
w
: 为互斥锁,用于实现写操作之间的互斥。writerSem
:写操作的信号量。当有goroutine
请求写操作时,如果有其他的goroutine
正在执行读操作,则请求写操作的goroutine
将会被阻塞,直到所有的读操作完成后,通过writerSem
信号量解除阻塞。readerSem
:读操作的信号量。当有goroutine
请求读操作时,如果此时存在写操作,则请求读操作的goroutine
将会被阻塞,直到写操作执行完成后,通过readerSem
信号量解除阻塞并继续执行。readerCount
:读操作的goroutine
数量,当readerCount
为正数时,表示有一个或多个读操作正在执行,如果readerCount
的值为负数,说明有写操作正在等待。readerWait
:写操作的goroutine
等待读操作完成的数量。当一个写操作请求执行时,如果此时有一个或多个读操作正在执行,则会将读操作的数量记录到readerWait
中,并阻塞写操作所在的goroutine
。写操作所在的goroutine
会一直阻塞,直到正在执行的所有读操作完成,此时readerWait
的值将被更新为0
,并且写操作所在的goroutine
将被唤醒。
RWMutex常用方法:
Lock()
:获取写锁,拥有写操作的权限;如果读操作正在执行,此方法将会阻塞,直到所有的读操作执行结束。Unlock()
:释放写锁,并唤醒其他请求读锁的goroutine
。TryLock()
:尝试获取写锁,如果获取成功,返回true
,否则返回false
,不存在阻塞的情况。RLock()
:获取读锁,读锁是共享锁,可以被多个goroutine
获取,但是如果有写操作正在执行或等待执行时,此方法将会阻塞,直到写操作执行结束。RUnlock()
:释放读锁,如果所有读操作都结束并且有等待执行的写操作,则会唤醒对应的goroutine
。TryRlock()
:尝试获取读锁,如果获取成功,返回true
,否则返回false
,不存在阻塞的情况。
简单读写场景示例
package main import ( "fmt" "sync" "time" ) type Counter struct { value int rwMutex sync.RWMutex } func (c *Counter) GetValue() int { c.rwMutex.RLock() defer c.rwMutex.RUnlock() return c.value } func (c *Counter) Increment() { c.rwMutex.Lock() defer c.rwMutex.Unlock() c.value++ } func main() { counter := Counter{value: 0} // 读操作 for i := 0; i < 10; i++ { go func() { for { fmt.Println("Value: ", counter.GetValue()) time.Sleep(time.Millisecond) } }() } // 写操作 for { counter.Increment() time.Sleep(time.Second) } }
上述代码示例中定义了一个
Counter结构体,包含一个
value字段和一个
sync.RWMutex实例
rwMutex。该结构体还实现了两个方法:
GetValue()和
Increment(),分别用于读取
value字段的值和对
value字段的值加一。这两个方法在访问
value字段时,使用了读写锁来保证并发安全。
在
main()函数中,首先创建了一个
Counter实例
counter,然后启动了
10个协程,每个协程会不断读取
counter并打印到控制台上。同时,
main()函数也会不断对
counter的
value值加
1,每次加
1的操作都会休眠
1秒钟。由于使用了读写锁,多个读操作可以同时进行,而写操作则会互斥进行,保证了并发安全。
基于 RWMutex 实现一个简单的协程安全的缓存
在 Go Mutex:保护并发访问共享资源的利器 文章中,使用了
Mutex实现了一个简单的线程安全的缓存,但并不是最优的设计,对于缓存场景,读操作比写操作更频繁,因此使用
RWMutex代替
Mutex会更好。
import "sync" type Cache struct { data map[string]any rwMutex sync.RWMutex } func NewCache() *Cache { return &Cache{ data: make(map[string]any), } } func (c *Cache) Get(key string) (any, bool) { c.rwMutex.RLock() defer c.rwMutex.RUnlock() value, ok := c.data[key] return value, ok } func (c *Cache) Set(key string, value any) { c.rwMutex.Lock() defer c.rwMutex.Unlock() c.data[key] = value }
上述代码实现了一个协程安全的缓存,通过使用
RWMutex的读写锁,保证了
Get()方法可以被多个
goroutine并发地执行,而且只有在读操作和写操作同时存在时才会进行互斥锁定,有效地提高了并发性能。
RWMutex 易错场景
没有正确的加锁和解锁
为了正确使用读写锁,必须正确使用锁的方法。对于读操作,必须成对使用
RLock()和
RUnlock()方法,否则可能会导致程序
panic或阻塞。
例如:如果缺少
RLock(),直接使用
RUnlock()方法,程序将会
panic,如果缺少
RUnlock()方法,将会发生阻塞的形象。
同样,对于写操作,必须成对使用
Lock()和
Unlock()方法。
最佳实践是使用
defer来释放锁:为了保证锁总是被释放,即使在运行时错误或提前返回的情况下,也可以在获得锁后立即使用
defer关键字来调度相应的解锁方法。
rwMutex.RLock() defer rwMutex.RUnlock() // 读操作 rwMutex.Lock() defer rwMutex.Unlock() // 写操作
重复加锁
重复加锁操作被称为可重入操作。不同于其他一些编程语言的锁实现(例如
Java的
ReentrantLock),
Go的
mutex并不支持可重入操作。
由于
RWMutex内部是基于
Mutex实现的写操作互斥,如果发生了重复加锁操作,就会导致死锁。这个易错场景在上篇文章中也提到了,还给出了代码示例,感兴趣的小伙伴可以去看看。
读操作内嵌写操作
当有协程执行读操作时,请求执行写操作的协程会被阻塞。如果在读操作中嵌入写操作的代码,写操作将调用
Lock()方法,从而导致读操作和写操作之间形成相互依赖关系。在这种情况下,读操作会等待写操作完成后才能执行
RUnlock(),而写操作则会等待读操作完成后才能被唤醒继续执行,从而导致死锁的状态。