«

Java中二分法怎么实现

时间:2024-4-18 09:10     作者:韩俊     分类: Java


这篇“Java中二分法怎么实现”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Java中二分法怎么实现”文章吧。

在一个有序数组中,找某个数是否存在

思路:

  • 由于是有序数组,可以先得到中点位置,中点可以把数组分为左右半边。

  • 如果中点位置的值等于目标值,直接返回中点位置。

  • 如果中点位置的值小于目标值,则去数组中点左侧按同样的方式寻找。

  • 如果中点位置的值大于目标值,则取数组中点右侧按同样的方式寻找。

  • 如果最后没有找到,则返回:-1。

代码

class Solution {
    public int search(int[] arr, int t) {
        if (arr == null || arr.length < 1) {
            return -1;
        }
        int l = 0;
        int r = arr.length - 1;
        while (l <= r) {
            int m = l + ((r - l) >> 1);
            if (arr[m] == t) {
                return m;
            } else if (arr[m] > t) {
                r = m - 1;
            } else {
                l = m + 1;
            }
        }
        return -1;
    }
}

时间复杂度 

O(logN)

在一个有序数组中,找大于等于某个数最左侧的位置

示例 1:

输入: nums = [1,3,5,6], target = 5

输出: 2

说明:如果要在

num
这个数组中插入 5 这个元素,应该是插入在元素 3 和 元素 5 之间的位置,即 2 号位置。

示例 2:

输入: nums = [1,3,5,6], target = 2

输出: 1

说明:如果要在

num
这个数组中插入 2 这个元素,应该是插入在元素 1 和 元素 3 之间的位置,即 1 号位置。

示例 3:

输入: nums = [1,3,5,6], target = 7

输出: 4

说明:如果要在

num
这个数组中插入 7 这个元素,应该是插入在数组末尾,即 4 号位置。

通过上述示例可以知道,这题本质上就是求在一个有序数组中,找大于等于某个数最左侧的位置,如果不存在,就返回数组长度(表示插入在最末尾位置)

我们只需要在上例基础上进行简单改动即可,上例中,我们找到满足条件的位置就直接

return

if (arr[m] == t) {
    return m;
}

在本问题中,因为要找到最左侧的位置,所以,在遇到相等的时候,只需要先把位置记录下来,不用直接返回,然后继续去左侧找是否还有满足条件的更左边的位置。

同时,在遇到

arr[m] > t
条件下,也需要记录下此时的
m
位置,因为这也可能是满足条件的位置。

代码:

class Solution {
    public static int searchInsert(int[] arr, int t) {
        int ans = arr.length;
        int l = 0;
        int r = arr.length - 1;
        while (l <= r) {
            int m = l + ((r - l)>>1);
            if (arr[m] >= t) {
                ans = m;
                r = m - 1;
            } else  {
                l = m + 1;
            } 
        }
        return ans;
    }
}

整个算法的时间复杂度是

O(logN)

在排序数组中查找元素的第一个和最后一个位置

思路

本题也是用二分来解,当通过二分找到某个元素的时候,不急着返回,而是继续往左(右)找,看能否找到更左(右)位置匹配的值。

代码如下:

class Solution {
    public static int[] searchRange(int[] arr, int t) {
        if (arr == null || arr.length < 1) {
            return new int[]{-1, -1};
        }
        return new int[]{left(arr,t),right(arr,t)};   
    }
    public static int left(int[] arr, int t) {
        if (arr == null || arr.length < 1) {
            return -1;
        }
        int ans = -1;
        int l = 0;
        int r = arr.length - 1;
        while (l <= r) {
            int m = l + ((r - l) >> 1);
            if (arr[m] == t) {
               ans = m;
               r = m - 1;
            } else if (arr[m] < t) {
                l = m +1;
            } else {
                // arr[m] > t
                r = m - 1;
            }
        }
        return ans;
    }
    public static int right(int[] arr, int t) {
        if (arr == null || arr.length < 1) {
            return -1;
        }
        int ans = -1;
        int l = 0;
        int r = arr.length - 1;
        while (l <= r) {
            int m = l + ((r - l) >> 1);
            if (arr[m] == t) {
               ans = m;
               l = m + 1;
            } else if (arr[m] < t) {
                l = m +1;
            } else {
                // arr[m] > t
                r = m - 1;
            }
        }
        return ans;
    }
}

时间复杂度 

O(logN)

局部最大值问题

思路

假设数组长度为

N
,首先判断
0
号位置的数和
N-1
位置的数是不是峰值位置。

0
号位置只需要和
1
号位置比较,如果
0
号位置大,
0
号位置就是峰值位置,可以直接返回。

N-1
号位置只需要和
N-2
号位置比较,如果
N-1
号位置大,
N-1
号位置就是峰值位置,可以直接返回。

如果

0
号位置和
N-1
在上轮比较中均是最小值,那么数组的样子必然是如下情况:

由上图可知,

[0..1]
区间内是增长趋势, 
[N-2...N-1]
区间内是下降趋势。

那么峰值位置必在

[1...N-2]
之间出现。

此时可以通过二分来找峰值位置,先来到中点位置,假设为

mid
,如果中点位置的值比左右两边的值都大:

arr[mid] > arr[mid+1] && arr[mid] > arr[mid-1]

mid
位置即峰值位置,直接返回。

否则,有如下两种情况:

情况一:mid 位置的值比 mid - 1 位置的值小

趋势如下图:

则在

[1...(mid-1)]
区间内继续二分。

情况二:mid 位置的值比 mid + 1 位置的值小

趋势是:

则在

[(mid+1)...(N-2)]
区间内继续上述二分。

完整代码

public class LeetCode_0162_FindPeakElement {
    public static int findPeakElement(int[] nums) {
        if (nums.length == 1) {
            return 0;
        }
        int l = 0;
        int r = nums.length - 1;
        if (nums[l] > nums[l + 1]) {
            return l;
        }
        if (nums[r] > nums[r - 1]) {
            return r;
        }
        l = l + 1;
        r = r - 1;
        while (l <= r) {
            int mid = l + ((r - l) >> 1);
            if (nums[mid] > nums[mid + 1] && nums[mid] > nums[mid - 1]) {
                return mid;
            }
            if (nums[mid] < nums[mid + 1]) {
                l = mid + 1;
            } else if (nums[mid] < nums[mid - 1]) {
                r = mid - 1;
            }
        }
        return -1;
    }
}

时间复杂度

O(logN)

标签: java

热门推荐