今天小编给大家分享一下C++的STL Vector怎么使用的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。
1.Vector的介绍
1.1 Vector的介绍
vector官方文档介绍
1.vector是表示可变大小数组的序列容器。
2. 就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。
3. 本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小 为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大小。
4. vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。
5. 因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。
6. 与其它动态序列容器相比(deque, list and forward_list), vector在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起list和forward_list统一的迭代器和引用更好
2.Vector的使用
vector在实际中非常重要且使用,因此我们需要熟悉使用常用的接口,以下将从常用的接口入手并进行模拟实现
vector模拟实现的基本结构:
template<class T> class vector { public: typedef T* iterator; typedef const T* const_iterator; //无参构造 vector() :_start(nullptr) , _finish(nullptr) , _endofstoage(nullptr) {} //资源管理 ~vector() { if (_start) { delete[] _start; _start = _finish = _endofstoage = nullptr; } } size_t size() const{ return _finish - _start; } size_t capacity() const{ return _endofstoage - _start; } private: iterator _start; iterator _finish; iterator _endofstoage; };
2.1 vector的定义
构造函数声明 constructor | 接口说明 |
vector()(重点) | 无参构造 |
vector (const vector& x); (重点) | 拷贝构造 |
vector(size_type n, const value_type& val = value_type()) | 构造并初始化n个val |
vector (InputIterator first, InputIterator last); | 使用迭代器进行初始化构造 |
//无参构造 vector() :_start(nullptr) , _finish(nullptr) , _endofstoage(nullptr) {} //拷贝构造 void swap(vector<T>& v){ std::swap(_start, v._start); std::swap(_finish, v._finish); std::swap(_endofstoage, v._endofstoage); } //vector(const vector& v) vector(const vector<T>& v) :_start(nullptr) , _finish(nullptr) , _endofstoage(nullptr) { vector tmp(v.begin(), v.end()); swap(tmp); } //初始化n个val vector(size_t n, const T& val = T()) :_start(nullptr) , _finish(nullptr) , _endofstoage(nullptr) { reserve(n); for (size_t i = 0; i < n; ++i) { push_back(val); } } //使用迭代化区间初始化 template <class InputIterator> vector(InputIterator first, InputIterator last) :_start(nullptr) , _finish(nullptr) , _endofstoage(nullptr) { while (first != last) { push_back(*first); ++first; } }
2.2 vector 迭代器的使用
iterator的使用 | 接口说明 |
begin+end (重点) | 获取第一个数据位置的iterator/const_iterator, 获取最后一个数据的下一个位置
的iterator/const_iterator |
rbegin+rend(反向迭代器) | 获取最后一个数据位置的reverse_iterator,获取第一个数据前一个位置的
reverse_iterator |
iterator begin(){ return _start; } iterator end(){ return _finish; } const iterator begin() const{ return _start; } const iterator end() const{ return
2.3 vector的空间增长问题
容量空间 | 接口说明 |
size | 获取数据个数 |
capacity | 获取容量大小 |
empty | 判断是否为空 |
resize(重点) | 改变vector的size |
reserve(重点) | 改变vector的capacity |
void resize(size_t{ if (n > capacity()) { reserve(n); } if (n > size()) { while (_finish < _start + n) { *_finish = val; ++_finish; } } else
void reserve(size_t{ size_t sz = size(); if (n > capacity()) { T* tmp = new T[n]; if (_start) { //这里会造成浅拷贝问题 //memcpy(tmp, _start, size() * sizeof(T)); for (size_t i = 0; i < size(); ++i) { tmp[i] = _start[i]; } delete[] _start; } _start = tmp; } _finish = _start + sz; _endofstoage = _start + n; }
注意:
1、我们在扩容的时候有一个小细节,capacity的容量扩容在vs和g++下分别运行是有区别的,在Vs下caoacity的扩容是按1.5倍增长的;在g++下是按2倍增长的。不能固化的认为,vector的增长都是2倍,具体增长的多少要根据需求定义。Vs是PJ盘本的STL,g++是SGI版本的STL。
//vs下 int main(){ vector<int> v; size_t sz = v.capacity(); for (int i = 0; i < 100; ++i) { v.push_back(i); if (sz != v.capacity()) { sz = v.capacity(); cout << "capacity changed: " << sz << ' '; } } return 0; }
3. vector的增删查改
vector增删查改 | 接口说明 |
push_back(重点) | 尾插 |
pop_back (重点) | 尾删 |
find | 查找。(注意这个是算法模块实现,不是vector的成员接口) |
insert | 在pos之前插入val |
erase | 删除pos位置的数据 |
swap | 交换两个vector的数据空间 |
operator[] (重点) | 像数组一样访问 |
3.1 push_back (重点)
void push_back(const{ if (_finish == _endofstoage) { size_t newCapacity = capacity() == 0 ? 4 : capacity() * 2; reserve(newCapacity); } *_finish = x; ++_finish; //insert(end(), x);
方法:
1、实现要考虑是否需要扩容,如果 _finish == _endofstoage 则需要扩容
2、尾插元素, ++_finish
3.2 pop_back (重点)
pop_back比较简单,尾删的逻辑不是删除而是覆盖,因此只需要--_finish即可
void pop_back(){ if (_finish > _start) { --_finish; } //erase(end() - 1);
3.3 insert
insert插入是在pos位置之前插入x
方法:
1、判断pos位置的合法性。
2、判断是否需要扩容,如果需要扩容则注意,这里会引发迭代器失效问题。
由于迭代器失效问题比较复杂,情况多样,我总结了一篇单独的博客供大家参考:
3、 挪动数据,由后往前走,让前一个覆盖后一个。
4、插入数据,++_finish, 返回pos位置
iterator insert(iterator pos, const{ //检查 assert(pos >= _start && pos <= _finish); //空间不够 扩容 //扩容以后 pos就失效了 if (_finish == _endofstoage) { //使用相对距离来计算确定pos位置 size_t n = pos - _start; size_t newCapacity = capacity() == 0 ? 4 : capacity() * 2; reserve(newCapacity); pos = _start + n; } //挪动数据 iterator end = _finish - 1; while (end >= pos) { *(end + 1) = *end; --end; } *pos = x; ++_finish; return
3.4 erase
erase是删除pos位置的数据
方法:
1、判断pos位置的合法性。
2.、拿到pos位置下一个位置的迭代器,从前往后,后一个覆盖前一个。
3、最后--_finish,返回pos位置
iterator erase(iterator pos){ assert(pos >= _start && pos <= _finish); iterator it = pos + 1; while (it != _finish) { *(it - 1) = *it; ++it; } --_finish; return
3.5 operator [ ]
重载的operator [ ] 就是取到pos位置对应的数据即可,比较简单
operator[](size_t pos) { assert(pos < size()); return _start[pos]; } const T& operator[](size_t pos) const { assert(pos < size()); return