这篇文章主要介绍“TypeScript怎么实现归并排序”,在日常操作中,相信很多人在TypeScript怎么实现归并排序问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”TypeScript怎么实现归并排序”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
一. 归并排序的定义
归并排序(merge sort)是一种常见的排序算法:
-
它的基本思想是将待排序数组分成若干个子数组。
-
然后将相邻的子数组归并成一个有序数组。
-
最后再将这些有序数组归并(merge)成一个整体有序的数组。
这个算法最早出现在1945年,由约翰·冯·诺伊曼(John von Neumann)(又一个天才,现代计算机之父,冯·诺依曼结构、普林斯顿结构)首次提出。
-
当时他在为美国政 府工作,研究原子弹的问题。
-
由于当时计算机,他在研究中提出了一种高效计算的方法,这个方法就是归并排序。
归并排序的基本思路是先将待排序数组递归地拆分成两个子数组,然后对每个子数组进行排序,最后将两个有序子数组合并成一个有序数组。
-
在实现中,我们可以使用“分治法”来完成这个过程,即将大问题分解成小问题来解决。
归并排序的算法复杂度为 O(nlogn),是一种比较高效的排序算法,因此在实际应用中被广泛使用。
虽然归并排序看起来比较复杂,但是只要理解了基本思路,实现起来并不困难,而且它还是一个非常有趣的算法。
二. 归并排序的流程
归并排序是一种基于分治思想的排序算法,其基本思路可以分为三个步骤:
步骤一:分解(Divide):归并排序使用递归算法来实现分解过程,具体实现中可以分为以下几个步骤:
-
如果待排序数组长度为1,认为这个数组已经有序,直接返回;
-
将待排序数组分成两个长度相等的子数组,分别对这两个子数组进行递归排序;
-
将两个排好序的子数组合并成一个有序数组,返回这个有序数组。
步骤二:合并(Merge):合并过程中,需要比较每个子数组的元素并将它们有序地合并成一个新的数组:
-
可以使用两个指针 i 和 j 分别指向两个子数组的开头,比较它们的元素大小,并将小的元素插入到新的有序数组中。
-
如果其中一个子数组已经遍历完,就将另一个子数组的剩余部分直接插入到新的有序数组中。
-
最后返回这个有序数组。
步骤三:归并排序的递归终止条件:
-
归并排序使用递归算法来实现分解过程,当子数组的长度为1时,认为这个子数组已经有序,递归结束。
总体来看,归并排序的基本思路是分治法,分成子问题分别解决,然后将子问题的解合并成整体的解。
三. 归并排序的图解
四. 归并排序的代码
下面是TypeScript实现的归并排序代码,带有详细的注释:
// 定义函数mergeSort,参数是待排序数组arr
function mergeSort(arr: number[]): number[] {
// 计算数组长度
const n = arr.length;
// 如果数组长度小于等于1,则直接返回该数组
if (n <= 1) {
return arr;
}
// 计算中间位置
const middle = Math.floor(n / 2);
// 对左边的数组进行归并排序
const left = mergeSort(arr.slice(0, middle));
// 对右边的数组进行归并排序
const right = mergeSort(arr.slice(middle));
// 合并两个排好序的数组
return merge(left, right);
}
// 定义函数merge,参数是两个排好序的数组left和right
function merge(left: number[], right: number[]): number[] {
// 定义指针变量,分别指向两个数组的开头
let i = 0, j = 0;
// 定义一个空数组,用来存放合并后的数组
const result = [];
// 比较两个数组的第一个元素,将较小的放入result数组
while (i < left.length && j < right.length) {
if (left[i] < right[j]) {
result.push(left[i++]);
} else {
result.push(right[j++]);
}
}
// 将没有比较完的剩余元素放入result数组
while (i < left.length) {
result.push(left[i++]);
}
while (j < right.length) {
result.push(right[j++]);
}
// 返回合并后的数组
return result;
}
// 测试数据
const testArr = [5, 2, 9, 1, 5, 6];
// 调用插入排序函数
const sortedArr = mergeSort(testArr);
// 打印结果
console.log(sortedArr);
代码执行的过程:
-
函数实现归并排序的递归调用,在该函数内,如果数组的长度小于等于1,直接返回该数组。mergeSort
-
如果数组的长度大于1,那么执行以下代码:
-
先计算数组的中点,并将数组分为左右两半。
-
递归调用左边和右边的数组,最终得到两个有序的数组。
-
函数实现将两个有序的数组合并为一个有序的数组。merge
五. 归并排序的时间复杂度
复杂度的分析过程:
-
假设数组长度为 n,需要进行 logn 次归并操作;
-
每次归并操作需要 O(n) 的时间复杂度;
-
因此,归并排序的时间复杂度为 O(nlogn)。
最好情况: O(log n)
-
最好情况下,待排序数组已经是有序的了,那么每个子数组都只需要合并一次,即只需要进行一次归并操作。
-
因此,此时的时间复杂度是 O(log n)。
最坏情况: O(nlogn)
最坏情况下,待排序数组是逆序的,那么每个子数组都需要进行多次合并。
因此,此时的时间复杂度为 O(nlogn)。
平均情况: O(nlogn)
-
在平均情况下,我们假设待排序数组中任意两个元素都是等概率出现的。
-
此时,可以证明归并排序的时间复杂度为 O(nlogn)。