«

python如何批量翻译excel表格中的英文

时间:2024-3-5 13:39     作者:韩俊     分类: Python


这篇文章主要介绍“python如何批量翻译excel表格中的英文”,在日常操作中,相信很多人在python如何批量翻译excel表格中的英文问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”python如何批量翻译excel表格中的英文”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

主要设计

  •  读取一个表格文件,获取需要翻译的文本

  •  使用百度翻译 API 进行翻译,获取翻译结果

  •  将翻译结果保存到原表格中,然后提取需要的列组成一个新的 DataFrame

  •  处理多个表格文件,将它们的翻译结果分别保存

  •  使用线程池加速翻译过程,可以同时翻译多个表格

  •  显示进度条

分析

  • 目标文件为xlsx格式,可以借助pandas进行读取文件和生成文件的操作。在这里我的源文件有若干列,其中第2列评论内容为我的目标列。

  • 在这里我用的是百度翻译api接口。也可以googletrans、translate,这些库可以在本地使用,不需要申请API密钥,但是翻译质量和速度可能不如云服务。

  • 由于我每个表格有2000行数据,总共有10个表格,一个个来的话不仅麻烦效率还低。

  • 我需要知道任务的进度,不想一直等下去

具体实现

表格操作

def TranslateTable(sInputFilename, sOutputFilename):
    # 读取表格A并选择需要翻译的列
    df_a = pd.read_excel(sInputFilename) # 获取df对象
    df_a = df_a.iloc[:, [1, 2]]  # iloc和loc很像,i=index,
    # 翻译英文列
    df_a['translation'] = df_a.iloc[:, 0].apply(Translate)
    # 创建表格B并保存
    df_b = pd.DataFrame({
        '原文': df_a.iloc[:, 0],
        '译文': df_a.iloc[:, 2]
    })
    df_b.to_excel(sOutputFilename, index=False)

请求百度翻译api

def Translate(sText, from_lang='en', to_lang='zh'):
    appid = 'xxxxxx'
    secret_key = 'xxxxxx'
    url = 'https://fanyi-api.baidu.com/api/trans/vip/translate'
    salt = random.randint(32768, 65536)
    sign = hashlib.md5((appid + sText + str(salt) + secret_key).encode()).hexdigest()
    params = {
        'q': sText,
        'from': from_lang,
        'to': to_lang,
        'appid': appid,
        'salt': salt,
        'sign': sign
    }
    response = requests.get(url, params=params)
    result = json.loads(response.content.decode())
    if result.get('error_code') is not None:
        return None
    return result['trans_result'][0]['dst']

多线程

使用concurrent.futures库中的 ThreadPoolExecutor类来实现多线程处理。

  • 创建一个 ThreadPoolExecutor对象。

  • 在循环中遍历每个表格A,并使用 submit方法向线程池提交任务。 submit方法将表格A的文件名和表格B的文件名作为参数传递给 translate_column函数,该函数将在单独的线程中执行。

ThreadPoolExecutor会自动管理线程池的大小,并在有空闲线程时分配新任务。这种方式可以利用多个CPU核心来并行处理多个表格,提高处理速度。

def TranslateTables(sInputFolder, sOutputFolder):
    sInputFilenames = [os.path.join(sInputFolder, f) for f in os.listdir(sInputFolder) if f.endswith('.xlsx')]
    with ThreadPoolExecutor() as executor:
        lstFutures = []
        for sInputFilename in sInputFilenames:
            sFilename = os.path.splitext(os.path.basename(sInputFilename))[0]
            sOutputFilename = os.path.join(sOutputFolder, sFilename + '_翻译结果.xlsx')
            lstFutures.append(executor.submit(TranslateTable, sInputFilename, sOutputFilename))
        for future in tqdm(as_completed(lstFutures), total=len(lstFutures)):
            pass

控制台显示进度

使用 concurrent.futures.as_completed 函数显示进度条。

完整源码

# -*- coding: utf-8 -*-
# time: 2022/2/17 03:06
# file: test.py
# author: Shi Yasong

"""
主要功能功能:
    1、读取一个表格文件,获取需要翻译的文本。
    2、使用百度翻译 API 进行翻译,获取翻译结果。
    3、将翻译结果保存到原表格中,然后提取需要的列组成一个新的 DataFrame。
    4、处理多个表格文件,将它们的翻译结果合并到一个 DataFrame 中,然后分别保存。
    5、使用线程池加速翻译过程,可以同时翻译多个表格
    6、使用  concurrent.futures.as_completed 函数显示进度条。
"""

from concurrent.futures import ThreadPoolExecutor, as_completed
from tqdm import tqdm  # 进度条库,需要先安装

import pandas as pd
import requests
import json
import os
import hashlib
import random

def Translate(sText, from_lang='en', to_lang='zh'):
    appid = 'xxxx'
    secret_key = 'xxxxx'
    url = 'https://fanyi-api.baidu.com/api/trans/vip/translate'
    salt = random.randint(32768, 65536)
    sign = hashlib.md5((appid + sText + str(salt) + secret_key).encode()).hexdigest()
    params = {
        'q': sText,
        'from': from_lang,
        'to': to_lang,
        'appid': appid,
        'salt': salt,
        'sign': sign
    }
    response = requests.get(url, params=params)
    result = json.loads(response.content.decode())
    if result.get('error_code') is not None:
        return None
    return result['trans_result'][0]['dst']

def TranslateTable(sInputFilename, sOutputFilename):
    # 读取表格A并选择需要翻译的列
    df_a = pd.read_excel(sInputFilename) # 获取df对象
    df_a = df_a.iloc[:, [1, 2]]  # iloc和loc很像,i=index,
    # 翻译英文列
    df_a['translation'] = df_a.iloc[:, 0].apply(Translate)
    # 创建表格B并保存
    df_b = pd.DataFrame({
        '原文': df_a.iloc[:, 0],
        '译文': df_a.iloc[:, 2]
    })
    df_b.to_excel(sOutputFilename, index=False)

def TranslateTables(sInputFolder, sOutputFolder):
    sInputFilenames = [os.path.join(sInputFolder, f) for f in os.listdir(sInputFolder) if f.endswith('.xlsx')]
    with ThreadPoolExecutor() as executor:
        lstFutures = []
        for sInputFilename in sInputFilenames:
            sFilename = os.path.splitext(os.path.basename(sInputFilename))[0]
            sOutputFilename = os.path.join(sOutputFolder, sFilename + '_翻译结果.xlsx')
            lstFutures.append(executor.submit(TranslateTable, sInputFilename, sOutputFilename))
        for future in tqdm(as_completed(lstFutures), total=len(lstFutures)):
            pass

# 调用函数翻译多个表格
sInputFolder = r'C:UserslenovoDesktopenglish'  # 修改为实际的表格文件夹路径
sOutputFolder = r'C:UserslenovoDesktopzh'  # 修改为实际的表格文件夹路径
TranslateTables(sInputFolder, sOutputFolder)

标签: python

热门推荐