«

Python中怎么用scipy生成特殊矩阵

时间:2024-6-8 09:49     作者:韩俊     分类: Python


本文小编为大家详细介绍“Python中怎么用scipy生成特殊矩阵”,内容详细,步骤清晰,细节处理妥当,希望这篇“Python中怎么用scipy生成特殊矩阵”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。

scipy.linalg
中提供了一系列特殊矩阵的生成方法,包括循环矩阵、汉克尔矩阵、费德勒矩阵、阿达马矩阵、莱斯利矩阵、希尔伯特及其逆矩阵、帕斯卡及其逆矩阵等。

循环矩阵

A = circulant([1,2,3])
print(A)
'''
[[1 3 2]
 [2 1 3]
 [3 2 1]]
'''

汉克尔矩阵

汉克尔矩阵和循环矩阵十分相似,不过在向左移位的过程中,

hankel(c, r=None)
在末尾直接赋0。若
r
不为
None
,则通过
r
对末位进行赋值

print(hankel([1,2,3,4], [0,7,7,8,9]))
'''
[[1 2 3 4 7]
 [2 3 4 7 7]
 [3 4 7 7 8]
 [4 7 7 8 9]]
'''

费德勒矩阵

阿达马矩阵

阿达马矩阵的每个元素都是± 1 pm1±1,每行都互相正交,常用于纠错码。在scipy.linalg中,hadamard(n, dtype)根据n来生成标准的n × n n imes nn×n阿达马矩阵,需要注意n nn必须为偶数,dtype为可选参数,用于指明矩阵的数据类型。

print(hadamard(4))
'''
[[ 1  1  1  1]
 [ 1 -1  1 -1]
 [ 1  1 -1 -1]
 [ 1 -1 -1  1]]
'''

莱斯利矩阵

leslie(f, s),其输入f ff和s ss两个向量,输出矩阵的形式为

print(leslie([0.1, 2.0, 1.0, 0.1], [0.2, 0.8, 0.7]))
'''
[[0.1 2.  1.  0.1]
 [0.2 0.  0.  0. ]
 [0.  0.8 0.  0. ]
 [0.  0.  0.7 0. ]]
'''

希尔伯特及其逆矩阵

print(hilbert(3))
'''
[[1.         0.5        0.33333333]
 [0.5        0.33333333 0.25      ]
 [0.33333333 0.25       0.2       ]]
'''

invhilbert(n, exact=False)可生成n × n n imes nn×n希尔伯特矩阵的逆矩阵,当exact为False时,返回np.float64类型矩阵;否则返回np.int64类型。

帕斯卡及其逆矩阵

print(pascal(4))
'''
[[ 1  1  1  1]
 [ 1  2  3  4]
 [ 1  3  6 10]
 [ 1  4 10 20]]
'''

invpascal
可生成逆帕斯卡矩阵,其参数与
pascal
相同。

标签: python

热门推荐