这篇“怎么使用Pytorch+PyG实现GCN”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“怎么使用Pytorch+PyG实现GCN”文章吧。
一、模型结构
在图神经网络的研究中,GCN(Graph Convolutional Networks)是一种比较常见且有效的模型。
在GCN模型中,每个节点都包含了该节点邻居节点信息的聚合,这意味着它是一个全局性模型。一个典型的GCN模型通常由两部分组成:一个基于消息传递算法的卷积层以及一个多层感知器。其中,前者主要完成特征融合,后者负责分类任务。
对于一个具有n个节点的图G,其特征矩阵X可以表示为:
步骤如下:
构建一个两层的卷积网络:第一层是GCN层,后面跟着ReLU激活和一个随机失活层;第二层是输出分类器。
模型在训练期间根据具体的损失函数(如交叉熵损失)进行优化,并用于预测新数据。
二、PyTorch实现
PyTorch使用dgl库可以方便地构建图,PyG也提供了类似的工具。接下来看一下如何使用PyTorch + PyG实现一个简单的GCN模型,以Cora数据集为例。
准备数据
Cora是一个分类任务的数据集,其中包含2708个文本节点名称,以及每个节点的1433维特征(词汇相关性)。首先,我们需要在PyG中将其转换为一个带有相应边缘信息的图形对象。具体而言,使用pyg.data.dataset工具加载Cora数据集,然后将其转换为一个PyG图。
from torch_geometric.datasets import Planetoid import torch_geometric.transforms as T dataset = Planetoid(root='/path/to/dataset', name='Cora', transform=T.NormalizeFeatures()) data = dataset[0] print(data)
定义GCN模型
在定义PyG的GCN网络之前,需要定义Convolutional Layer,这个层以邻接矩阵A作为输入,通过权重权值矩阵W来散播消息,并输出一个新特征向量。
import torch.nn.functional as F from torch_geometric.nn import GCNConv class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = GCNConv(dataset.num_features, 16) self.conv2 = GCNConv(16, dataset.num_classes) def forward(self, x, edge_index): x = self.conv1(x, edge_index) x = F.relu(x) x = F.dropout(x, training=self.training) x = self.conv2(x, edge_index) return F.log_softmax(x, dim=1)
定义训练过程
训练具体流程如下:
对于每个epoch,进行随机梯度下降优化。我们选择交叉熵作为损失函数,并使用Adam作为优化器。
在测试期间,用验证集对精确度进行评估。
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = Net().to(device) data.to(device) optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4) def train(): model.train() optimizer.zero_grad() out = model(data.x, data.edge_index) loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask]) loss.backward() optimizer.step() def test(): model.eval() _, pred = model(data.x, data.edge_index).max(dim=1) correct = int(pred[data.test_mask].eq(data.y[data.test_mask]).sum().item()) acc = correct / int(data.test_mask.sum()) return acc for epoch in range(1, 201): train() test_acc = test() print(f'Epoch: {epoch:03d}, Test Acc: {test_acc:.4f}')